Category Archives: Uncategorized

Review of New York State Clean Energy Proposals

To: Clients and Colleagues
From: John Dalton, President & Margaret Blagbrough, Consultant, Power Advisory LLC

On January 2, New York Governor Andrew Cuomo unveiled sweeping clean energy proposals touching every aspect of the renewable energy sector. The main purpose of these proposals is to allow the state to fight climate change and protect the environment, while also creating jobs in the renewable energy sector. The set of proposals, titled the 2018 Clean Energy Jobs and Climate Agenda, is in addition to ambitious clean energy goals already mandated in the state, including the mandate to generate 50 percent of the state’s electricity from renewable energy sources by 2030.

A major piece of this agenda focuses on energy storage. Governor Cuomo plans to add 1,500 megawatts of energy storage by 2020, the largest commitment of this type per capita by any state. In order to achieve this goal, the Governor is proposing a commitment of $200 million from the NY Green Bank for energy storage investments. Additionally, he is directing the New York State Energy and Research Development Authority (NYSERDA) to invest $60 million through storage pilots to reduce barriers for deploying energy storage. This will pave the way for utility procurements of energy storage in 2018. Additionally, energy storage will be incorporated into the criteria for future large scale renewable procurements.

The Governor is also calling for a procurement of at least 800 megawatts of offshore wind generation between two solicitations issued in 2018 and 2019. These will be the first procurements in a set of staggered procurements to reach the state target of 2.4 gigawatts of offshore wind by 2030, established last year. Governor Cuomo is directing NYSERDA to invest in job training in the offshore wind industry and to determine the most promising offshore wind port infrastructure investments. In October of 2017, New York State submitted an identified Area of Consideration for new wind lease areas to the Bureau of Ocean Energy Management (BOEM). New York requested that BOEM identify and lease at least four new wind energy areas, each accommodating at least 800 megawatts of offshore wind, within the Area of Consideration.

The Governor also addressed energy efficiency, calling on stakeholders to propose a far-reaching energy efficiency initiative by April 22, 2018, propose a 2025 energy efficiency target, and establish appliance efficiency standards. Other agenda items include: the development of a zero-cost solar program for 10,000 low-income residents; expanding the Regional Greenhouse Gas Initiative (RGGI) to other states and to broaden regulations to include smaller and less efficient peaking plants; and phase out all coal-fired power plants in New York by 2020.

Power Advisory would welcome the opportunity to assist clients in assessing opportunities in the New York renewable energy market.

A PDF version of this report is available here.

Review of Massachusetts Offshore Wind Energy RFP (83C) Proposals

To: Clients and Colleagues
From: John Dalton, President; Margaret Blagbrough, Consultant; Michael Ernst, Executive Advisor; Power Advisory LLC

On December 20, 2017, the Massachusetts investor-owned electric distribution companies (Distribution Companies) in coordination with the Massachusetts Department of Energy Resources (DOER) received three proposals for offshore wind energy generation projects, in response to the RFP they issued for 400 MW (and up to 800 MW) of wind energy under long-term contracts. This procurement is the first in a series of competitive solicitations under the state’s 2016 Act to Promote Energy Diversity mandate for 1,600 MW of offshore wind (OSW) by June 30, 2027. Winners of this first procurement will be announced on April 23, 2018. The bidders who submitted proposals are those that hold existing Bureau of Ocean Energy Management (BOEM) Massachusetts or Massachusetts/Rhode Island offshore leases: Deepwater Wind, Bay State Wind (Ørsted and Eversource Energy), and Vineyard Wind (Avangrid Renewables and Copenhagen Infrastructure Partners). The figure below shows the locations of each of the proponents’ lease areas.

Proposals are required for the target capacity of 400 MW, but additional proposals between 200 MW and 800 MW are allowed and were submitted. Any chosen proposal over 400 MW must be superior and provide significantly more economic benefits to Massachusetts ratepayers. Each proponent must include a proposal for a generator lead line to deliver offshore wind to the corresponding onshore ISO-New England (ISO-NE) Pool Transmission Facilities (PTF). Additionally, proponents must submit a proposal for an expandable transmission network providing nondiscriminatory access for all offshore wind facilities.

Proponents will be evaluated in three stages. In the first stage, proposals will be evaluated to see if they meet eligibility and threshold criteria. Proposals that meet the basic requirements of stage one will be evaluated based on the costs and benefits of the project in stage two. Quantitative evaluation criteria in this stage include direct costs and benefits and other costs and benefits to retail customers. Qualitative evaluation criteria will include: (1) the siting, permitting and project schedule; (2) reliability benefits; (3) benefits, costs, and contract risk; (4) environmental impacts from siting; and (5) economic benefits to the Commonwealth. In the third stage, the Evaluation Team will further evaluate proposals to ensure that they are the most cost-effective solutions for ratepayers and that they will provide reliable renewable energy for the long-term.

Confidential information including pricing has been redacted from the public versions of bids we have reviewed and summarized below.

Bay State Wind

Bay State Wind, the partnership between Ørsted and Eversource, proposed either a 400 MW or 800 MW wind farm 25 miles off of New Bedford, MA. The 400 MW project would be paired with a 30 MW/ 60 MWh battery storage facility, while the 800 MW project would be paired with a 55 MW/110 MWh battery storage facility. Ørsted, formerly DONG Energy, is the world’s largest offshore wind developer. Ørsted has constructed 3.8 GW of offshore wind capacity over the past 25 years and has another 5 GW under construction. Eversource is New England’s largest energy provider and is slated to develop and construct the project’s onshore transmission system.

The project would use New Bedford as the construction area and the base of its operations and maintenance throughout the project’s lifetime. Brayton Point in Somerset, MA will be the grid connection location for the project and the home of the battery storage facility.  The project would result in the development of the first Jones Act compliant installation and transportation vessels.

In their proposal, the company stated that they are the furthest along in the ISO-NE interconnection queue process compared to the other two eligible bidders. Their completed Feasibility Study shows that either of the two projects can interconnect into Brayton Point without any system upgrades. The timeline of the project was not publicly released.

Bay State Wind asserts that the scale of its proposed projects will better allow Massachusetts to become “the hub of the offshore wind industry in Massachusetts” and that Ørsted’s “develop, build, own, and operate” model ensures that it is vested in the long-term success of its wind farms, compared to other developers.

Deepwater Wind

Deepwater Wind proposed either a 200 MW or 400 MW wind farm, called Revolution Wind, with a commercial operation date (COD) in 2023.  Deepwater Wind also appears to have submitted an expandable offer, the details of which were redacted.  It proposed an initial 144 MW phase of the project in response to Massachusetts’ 83D solicitation for 9.45 TWh of clean energy. The state will announce the winners of that RFP on January 25, 2018.

In contrast to Bay State Wind and Vineyard Wind, Deepwater Wind’s value proposition is focused on the economies offered by the gradual and sequenced development of the offshore wind industry from smaller to larger wind farms.  This strategy leverages off existing its existing OSW project and contract to develop another OSW project. Deepwater Wind built the 30 MW Block Island Wind Farm in 2015 and 2016 and has a contract with Long Island Power Authority to build the 90 MW South Fork Wind Farm foundations in 2021 and install the turbines in 2022.  Deepwater Wind proposes to build the Revolution Wind foundations in 2022 and install the turbines in 2023.  We believe that its redacted expandable proposal provides for subsequent phases of the Revolution Wind project to further develop the OSW supply chain.  Deepwater Wind asserts that its approach avoids a “boom-bust cycle.” Presumably, the pricing for the expandable offer reflects projected economies that will be realized from the development of the OSW supply chain.

The proposal includes an agreement with the Northfield Mountain Generating Station, a pumped-storage hydroelectric plant in Northfield, MA.  If the Distribution Companies select this Storage Feature, the facility would store energy generated by the wind farm during off-peak hours and deliver energy to electric utilities during on-peak hours.

Deepwater Wind also partnered with GridAmerica Holdings Inc. (a National Grid subsidiary) to develop the Project interconnection and an offshore transmission network. The network could support up to 1,600 MW of wind energy for Revolution Wind and future wind farms. Revolution Wind would connect to the Brayton Point substation in Somerset, MA (1,000 MW) and to Davisville substation in North Kingstown, RI (600 MW), and will be operated and maintained in New Bedford, MA. The project is set to begin construction in 2022 if approved, and commence operations in 2023. Deepwater Wind is the developer of the Block Island Wind Farm off the coast of Rhode Island, which is the United States’ first commercial offshore wind farm and another GridAmerica affiliate constructed the Block Island Transmission System for the interconnection into Rhode Island.

Vineyard Wind

Vineyard Wind, a joint venture of Avangrid Renewables and Copenhagen Infrastructure Partners, submitted proposals for either a 400 MW or 800 MW wind farm. For the 400 MW project, the generation would be bundled with Vineyard Connector 1, which is an 800 MW expandable transmission project. Vineyard Wind Connector 2 is an optional phase two of the expandable transmission project, which would have another 800 MW of capacity. For their 800 MW project, Vineyard Wind is bundling Vineyard Wind 1 and Vineyard Wind 2, each a combined generation and transmission project with individual capacities of 400 MW. An optional phase would be Vineyard Wind Connector 2, an expandable transmission project, which would have another 800 MW of capacity. The lines would interconnect to Barnstable, MA, and West Barnstable, MA.  Vineyard Wind would use Vineyard Haven, MA as its site for the operations and maintenance port during the life of the project.

The 400 MW project would have a COD of December 2021, which Vineyard Wind claims to be the earliest possible project in Massachusetts given its position as the “most mature and most advanced” large scale wind project as evidenced by its recent December 2017 applications for a federal Construction and Operations Plan with BOEM and with the state Energy Facilities Siting Board. The second 400 MW would be commissioned in 2022.  Vineyard Wind has a Community Benefits Agreement and letters of support from local fishermen and all six towns on Martha’s Vineyard plus Nantucket.

Vineyard Wind would establish a $15 million Massachusetts Offshore Wind Accelerator Program to support upgrade of local ports for staging, support set-up costs for supply chain companies, training local workers and investing in new technologies to protect marine species.  Vineyard Wind would also establish a self-sustaining Resiliency and Affordability Fund that invests in local energy storage facilities.

Avangrid, Inc. owns regulated utilities and renewable energy assets throughout the United States including Unitil, one of Massachusetts’ electric utilities. Avangrid Renewables, another one of Avangrid’s subsidiaries, recently won BOEM’s competitive lease auction for a wind lease area off the coast of North Carolina. Copenhagen Infrastructure Partners is a fund management company that has developed and invested in large offshore wind projects worldwide.

Power Advisory would welcome the opportunity to assist clients in assessing opportunities in the US offshore wind market, especially the upcoming BOEM Massachusetts and NY lease sale auctions, submission of comments on the 83C RFP, and participation in subsequent solicitations.

A PDF version of the report is available here.

BOEM Massachusetts Offshore Wind Lease Opportunity Review

John Dalton, President & Michael Ernst, Executive Advisor, Power Advisory LLC

The Bureau of Ocean Energy Management (BOEM) has indicated that it will be conducting auctions for two additional lease areas for the Massachusetts Wind Energy Area (WEA) in 2018.  The auction of the two lease areas, an aggregate of 388,569 acres (248,015 and 140,554 acres, respectively) with a maximum development potential of 4,717 MW, is in response to unsolicited lease applications from Statoil Wind US LLC and PNE Wind USA Inc. from December 2016 (See Figure 1 below). These Norwegian and German affiliated developers have announced plans for multiple +400MW projects, but since both expressed interest in the same lease area BOEM must hold a lease auction in which all qualified parties may participate.   Lease Areas OCS-A 0502 and 0503 make up the remaining Massachusetts WEA.

Figure 1: MA and RI Offshore Wind Project Areas

Source: BOEM

The interest in these two additional lease areas is expected to be strong given that lease holders will be able to participate in subsequent rounds of the Massachusetts offshore wind RFPs for 20-year power contracts issued to allow the Commonwealth to realize its legislated objective of 1,600 MW of offshore wind by 2027.[1]  The total area to be leased is over four times the size of the New York lease area. This memo reviews the anticipated form of auction to be employed by BOEM and opportunities for interested parties to begin to prepare to participate successfully in such a process.

Auction Format

BOEM has typically employed a multiple-factor auction format, under which BOEM considers a combination of monetary and nonmonetary factors.  Non-monetary factors are considered by a panel which determines whether the bidder has earned non-monetary credits and the percentage that the credit may be worth.  The previous Auction for North and South Rhode Island and Massachusetts lease areas provided for a credit of up to 25% of a monetary bid for a Power Purchase Agreement or Joint Development Agreement.

The auction is based on ascending bidding, i.e., ascending clock auction, over multiple rounds.  To enhance competition BOEM shares information with bidders on the number of bidders for each Lease Area for each round.  At the start of each round BOEM specifies an asking price for each Lease Area.  A bidder must submit a bid for the full asking price for at least one lease area to participate in the next round of the auction.  A bidder may submit an intra-round bid, which is greater than the last round’s price, but less than the current round.  In essence, the bidder may elect to bid less than the BOEM asking price as a final exit bid.  When there are multiple lease areas activity rules are employed that allow bidders to switch lease areas that they bid on, but require minimum levels of participation.  A bid deposit must cover each bid, and will be deducted from the winning bid price or refunded if the bid is not successful. Bid deposits have been $450,000 for the most recent BOEM lease auctions.[2]

To participate in the auction, the bidder must first be qualified by BOEM and become an eligible bidder.  Qualification requirements focus on legal, technical and financial capability as specified in 30 CFR 585.106 and 585.107.[3]  Eligible bidders must complete a Bidders Financial Form, which provides details of accounts from which funds will be provided and to where refunds will be directed and individuals authorized to bid and submit bid deposits generally two weeks prior to the date of the auction.  At this time, bidders would also provide a non-Monetary package if they were applying for a credit for community benefits based on an executed agreement with a qualified community organization or municipality.

Evaluating Participation in the Massachusetts WEA Lease Auction

In assessing whether to participate in the BOEM auction, prospective bidders will want to assess the opportunity offered by these two lease areas to ensure that they offer a reasonable prospect of competing successfully with the three existing leaseholders.   Specifically, these two lease areas will require a greater transmission investment.   However, the four Massachusetts WEAs were delineated to provide roughly equivalent water depths, and thus similar costs for foundations for the initial several hundred megawatts of capacity.  Offsetting the greater required transmission investment are greater wind speeds in WEAs 0502 and 0503.   Interestingly, the average wind speed in Lease Area 0502 is the highest of the four WEAs according to analysis performed by NREL.  More importantly, the lowest depths in Lease Areas 0502 and 0503 are associated with higher wind speeds. This suggests that these lease areas could have lower foundation costs and higher overall output levels. This combination could allow them to compete effectively with other leaseholders in the Massachusetts RFP even with higher transmission costs.  Figure 2 reviews the water depths of these lease areas and Figure 3 reviews the wind speeds of these different lease areas, relative to the cost of participating in the auction and the Power Advisory estimates.

Figure 2: Massachusetts Offshore Wind Speeds

Source: NREL

Figure 3: Massachusetts Offshore Water Depths

Source: NREL

BOEM has issued an Environmental Assessment of the entire Massachusetts WEA and issued a Finding of No Significant Impact.[4] Lease Areas 0502 and 0503 are also located over 20 miles from Nantucket and Martha’s Vineyard reducing visibility of the turbines from shore which has been a significant obstacle to earlier proposed offshore wind farms such as Cape Wind off of Massachusetts.

To assess the potential economic value of the higher output offered by Lease Areas 0502 and 0503, we used the increased annual energy output estimated by NREL for each WEA for a 500 MW OSW project configuration and projected the incremental value of the WEA assuming a 20-year PPA term and a PPA price of $110/MWh.  The incremental value was considerably below the estimated incremental cost of transmission interconnection.  This suggests that additional cost savings from lower water depths would be required.

In sum, based on this high-level analysis Lease Areas 0502 and 0503 warrant more detailed analysis.  On October 4, 2017, the Director of the Office of Renewable Energy Programs for BOEM announced plans to issue the Proposed Sale Notice for these lease areas by the end of 2017 with the auction during the summer of 2018.

Power Advisory would welcome the opportunity to assist clients in assessing opportunities in the US offshore wind market, especially the upcoming BOEM Massachusetts and NY lease sale auctions, submission of comments on the 83C RFP, and participation in subsequent solicitations.

[1] See Power Advisory’s May 12, 2017 memo that reviewed past BOEM WEA leases.

[2] The most recent BOEM lease auction was for New York in December 2016. See  https://www.boem.gov/NY-FSN/.

[3] Power Advisory has assisted clients with complying with these requirements.

[4] The EA and FONSI are located here: https://www.boem.gov/Revised-MA-EA-2014/.

A PDF version of the report is available here.

U.S. Offshore Wind Current Progress and Cost Drivers

Though the offshore wind (OSW) industry in the United States has lagged behind Europe, given the   commitment by policymakers to support the development of the industry and allow the realization of economies achieved in Europe, future prospects for the industry appear bright. The purpose of this report is to summarize the short history of offshore wind in the United States, outline the current state of the industry, and then consider the cost drivers that will shape the industry in the future.

Figure 1: US Offshore Wind Value Proposition[1]

Industry History

One of the groundbreaking, albeit controversial landmarks in the U.S. offshore wind industry was the Cape Wind Project. Cape Wind submitted an application in 2001 to the US Army Corps of Engineers (USACE) to construct a met tower. Though the USACE gave Cape Wind permission to build a met tower, the Energy Policy Act of 2005 shifted Federal authority to the Department of the Interior, which slowed the project’s progress. For the next decade, Cape Wind faced numerous obstacles, including determinations that the planned site in the Nantucket Sound qualified as traditional cultural, historic and archaeological property. Cape Wind’s power purchase agreements provided a price of $187/MWh, escalating at 3.5% per annum for 15 years.  In January 2015, National Grid and Northeast Utilities notified Cape Wind that they were terminating their power purchase agreements (PPAs) given the project hadn’t achieved its financing and construction initiation milestones in the PPAs. Cape Wind was planned to total 468 MW, with these two PPAs covering about 75% of its capacity.

Avoiding many of the regulatory hurdles of its predecessor, but requiring legislative changes to the regulatory standard for approval of its PPA, Block Island Wind Farm (BIWF) began construction in 2015, and became the US’s first operational offshore wind farm in December 2016. It is located 3 miles off of Block Island, in Rhode Island state waters. The project includes 5 turbines, capable of producing 30 MW. BIWF signed a 20-year PPA with National Grid for its full output, set at $244/MWh for the first year of commercial operation with an annual escalation of 3.5 %. One factor contributing to the project’s support is that it connects Block Island to the New England grid, allowing it to avoid high cost diesel generation that the island otherwise relied upon.

Current Developments

Leases for OSW have been issued in Massachusetts, Delaware, Maryland, Virginia, New Jersey, North Carolina, and New York by the Bureau of Ocean Energy Management (BOEM).[2]These states are leaders in promoting the development of an OSW industry, with the greatest activity in Massachusetts, New York, and Maryland.  Activities in each are reviewed below.

Figure 2: US Atlantic Offshore Wind Projects and Lease Areas[3]

*National Grid area represents electric cable from Block Island Wind Farm

The Massachusetts investor-owned electric distribution companies issued a Request for Proposals (RFP), seeking long-term contracts for 400 MW and up to 800 MW of OSW generation. Proposals are due December 20, 2017. This RFP is open to the three-existing wind energy area leaseholders: Deepwater Wind; Bay State Wind LLC (Dong Energy and Eversource); and, Vineyard Wind (Copenhagen Infrastructure Partners and Avangrid Renewables). This will be the first procurement in response to the state’s legislated goal to reach 1,600 MW of OSW development by 2027.

Because more than one party expressed interest in securing leases for the two remaining Massachusetts lease areas within the Massachusetts Wind Energy Area (WEAs), BOEM will hold a lease sale auction in late 2017 or early 2018. BOEM has yet to announce the specific auction date. These lease areas are adjacent to those that are expected to bid in the first Massachusetts RFP, though they are further from shore and have the greatest average water depths. The two lease areas to be auctioned are 248,015 acres and 140,554 acres, which can support a maximum of approximately 4,717 MW of OSW generation. Winners of these leases will be eligible to bid into the second auction for long term contracts in Massachusetts.

BOEM has also issued two leases off New Jersey, whose legislature has authorized the sale of 1100 MW of OSW to be purchased by the state’s electric distribution companies through Offshore Renewable Energy Credits (ORECs).  The NJ Board of Public Utilities has been developing the rules for these Ocean Renewable Energy Credits for several years.

Off the coast of Maryland and Delaware, two projects have recently been awarded ORECs in response to the state’s 2013 RFP for offshore wind. US Wind LLC has outlined a proposed 62 turbine, 248 MW wind farm, to be connected to the Indian River Substation in Delaware and operational in 2020. Skipjack Offshore Wind, a subsidiary of Deepwater Wind, has proposed a 15 turbine, 120 MW wind farm to be connected to the Ocean City, Maryland substation and operational in 2022. Maryland has issued unbundled ORECs to US Wind LLC and Deepwater Wind Skipjack. US Wind bid a first year OREC price of $201.57/MWh or a levelized price of $177.64/MWh (2012$) and Skipjack an OREC price of $166.0/MWh or a levelized price of $134.36/MWh (2012$).  A 1% price escalator will be applied to these first-year prices for the next 20 years of each project’s operation.[4]  In addition to the revenues from these ORECs, the projects will realize production tax credits and energy and capacity market revenues.  These energy and capacity market revenues are likely to represent a value of about $50/MWh.

Figure 3 summarizes US OSW PPA pricing to date by project vintage. Recent European PPA prices are also reported for reference.

Figure 3: US Offshore Wind PPA Pricing[5]

* Cape Wind PPAs terminated do to a failure to achieve financing and construction milestones.

**Average adjusted strike price and average capacity for 2023-2025 projects in the Netherlands, Denmark and Germany from NREL 2017.

Already, there is some evidence of PPA price reductions in the US market.  However, trends are masked by varying competitiveness of RFP processes; in particular, the Maryland process where it appears that US Wind was able to capitalize on its position as the sole leaseholder in Maryland. Future reductions will be driven by the factors discussed in the next section.

Cost-Driver Analysis: 4 Main Drivers

  1. Site Evaluation and Characterization

While potential sites for offshore wind in the US share some characteristics with those of the more mature European market, there are major differences. Sites in the US lack critical data about geological, oceanographic, and meteorological conditions, which increases the initial development risks of OSW projects, and therefore the costs to finance them. With the development of additional projects and collection and verification of data the uncertainty associated with these variables and the impacts on project costs and performance would fall.

  1. Technological Advancement

Continuing research and development to produce larger, more cost-effective equipment (including wind turbine generators, which benefit from European experience, and foundations) will be necessary to further decrease costs. This applies to adapting and advancing existing technologies from Europe, developing new technologies, and creating new installation techniques.

Currently, 75% of the world’s deployed offshore wind resources use monopile fixed-bottom structures, which may not be feasible for water depths of greater than 60 meters. As more than 58% of the US’s technical resource capacity is located at water depths greater than 60 meters, many new projects will use lattice steel foundations installed at the Block Island Wind Farm and pioneered by the oil and gas industries and floating foundation technology anchored to the seabed with tension anchor chains. Floating foundation technology is just being constructed in Europe. Norwegian energy giant Statoil is scheduled to connect the first floating wind farm in late 2017 with their 30 MW Hywind farm[6], with 237 MW expected to be fully installed globally by 2020[7]. Currently, floating offshore wind accounts for 7% of the known global pipeline[8], making future developments in this area likely.

Higher capacity turbines offer significant reductions in OSW LCOEs. The Block Island Wind Farm utilized 6 MW WTGs, compared to current turbines produced in Europe that can produce upwards of 9 MW and 10 and 12 MW turbines in design. Capacity factors will also rise with larger rotor diameters and improved accessibility to turbines for maintenance, as this will decrease their downtime. Improved accessibility is an especially important consideration on the Pacific Coast, where ocean conditions are generally rougher than those on the Atlantic Coast.[9]

Technological developments will enable the integration of turbine and substructures to create a single system that will enable design optimization that will drive further cost reductions. Installation cost would also fall as more specialized vessels suited for installation are deployed in the US. Such vessels currently exist in Europe, but are not available in the US due to limited market that hasn’t justified the construction of such vessels. As turbines and rotors become larger, these vessels become more important.

As for operating expenses, cost reductions will occur with improvements in turbine reliability and monitoring technology that will allow operators to identify problems in real-time, keeping resources operating longer and at higher availabilities.

  1. Supply Chain Development

Not surprisingly, there are significant gaps in the current US OSW supply chain that prevent the realization of cost savings being achieved in Europe. Currently, the US supply chain is not well inventoried, and lacks necessary workforce, port facilities, and vessels needed to support a robust and efficient industry.

Geographic concentration of the supply chain would further reduce OSW costs, as proximity decreases transportation costs and fosters better communication between supply chain members. This “clustering” strategy also allows for more robust project management and top-to-bottom collaboration on wind energy projects[10].

Almost all of the OSW components, including rotors and turbines, are currently manufactured in Europe. Specialized equipment for installing offshore wind turbines, like installation vessels, are also often only available from European firms, resulting in high costs. Desired investments in the supply chain that will realize these cost savings will occur, if there is a visible, stable development pipeline.

4. Market Visibility

Market visibility is a commitment to the steady procurement of a pipeline of OSW projects over a defined period of time. Greater market visibility would reduce costs for OSW for two main reasons. First, more entrants will be attracted to the market, increasing competition and lowering their bargaining power. Second, as projects get relatively less risky, investors with a lower hurdle rate may be drawn to invest when they had not previously. A visible pipeline of projects can reduce capital, maintenance, and insurance costs and is critical to ensuring that these costs are minimized.  Construction of turbine manufacturing facilities on European coastlines have reduced the levelized cost of OSW below $100/MWh. The lack of certainty around the US PTC and how this frustrated the development of US onshore wind energy supply chain is a relevant warning. Per the 2015 extension of the PTC it is to be phased on it steps by 2020, so that the value in 2017 is 80% of the initial $0.023/kWh value, 60% in 2018 and 40% in 2019. Also, by generating repeated investments from equity investors with knowledge of the renewable energy sector, WACC could be lowered, reducing the cost of equity and debt.

Conclusion

Though the U.S. OSW market has taken longer to develop than its European counterpart, its future prospects are promising.  The comparatively high OSW costs in the U.S. reflect the immaturity of the industry; however, by adopting best practices from Europe and committing long-term to OSW development, the U.S. can drive costs down significantly. Coupled with future technological innovation, the U.S. OSW industry is well-positioned to represent a cost-effective source of clean energy.

Power Advisory would welcome the opportunity to assist clients in assessing opportunities in the US offshore wind market, especially the upcoming BOEM Massachusetts and NY lease sale auctions, submission of comments on the 83C RFP, and participation in subsequent solicitations.

A PDF version of this report is available here.

[1] US Department of Energy and Department of the Interior, National Offshore Wind Strategy, 2016

[2] Norton Rose Fulbright, US Offshore Wind, 2017

[3] BOEM 2016

[4] US Department of Energy: Offshore Wind Technologies Market Report, 2016

[5] Power Advisory analysis of various public orders and studies. Size of marker represents the relative nameplate capacity

[6] Statoil: Hywind Scotland

[7] Bloomberg: Race to Build Offshore Wind Farms That Float on Sea Gathers Pace, 2017

[8] NREL: Offshore Wind Energy Resource Assessment for the United States, 2016

[9] US Department of Energy and Department of the Interior, National Offshore Wind Strategy, 2016

[10] Clean Energy Pipeline, Offshore Wind Project Cost Outlook, 2014

Power Advisory Presents at CanWEA Spring Forum

Yesterday, our President John Dalton presented at the CanWEA Spring Forum on the Opportunities Offered by the New England Electricity Market for Eastern Canadian Wind Projects.  The presentation and discussion presented Power Advisory’s perspective on renewable energy drivers in the New England electricity market including recent State-level initiatives that are creating opportunities for clean energy from Eastern Canada. Hear on market drivers, State policy updates, renewable energy incentives (RECs, RPS) and opportunities for Canadian wind energy

For more information, please click here

Power Advisory Supporting Prince Edward Island New Energy Strategy

Power Advisory is pleased to announce the strategic support for Prince Edward Island as the Province develops a new energy strategy.  Power Advisory, in partnership with Dunsky Energy Consulting, will help to develop a comprehensive energy strategy with focus on sustainability, energy efficiency, conservation and renewable energy alternatives.  The assessment will consider the economic benefit to the province and will be integrated with the provincial climate change strategy.

See the PEI announcement here

Power Advisory discusses evolving solar energy feasibility at Homebuilder & Renovators Expo

Travis Lusney, Director at Power Advisory, participated on a panel at the Homebuilder & Renovator Expo on December 3 in Toronto.  The panel “Evolving Economics: Tracking How Solar Energy Feasibility is Improving from Year to Year” discussed the evolving economics of solar in relationship to electricity pricing, carbon pricing, feed-in tariff, and net-metered incentives.

For more information, please see the Expo’s website here.

Entergy’s Retirement of Pilgrim: Response to Markets or Market Failure?

John Dalton, President, Power Advisory LLC

Entergy Corp.  announced yesterday that it would retire the Pilgrim Nuclear Power Plant (683 MW) no later than June 1, 2019 citing “low energy prices, little expectation of near-term market structure improvements and increased operational costs”.    Entergy noted that as of June 1, 2019 that Pilgrim would no longer participate in the ISO-NE’s Forward Capacity Market (FCM), but that it may elect to shut the unit down prior to this.   (If it did so, it would need to discharge its Capacity Supply Obligation from past participation in Forward Capacity Auctions in one of ISO-NE’s reconfiguration auctions.)

The loss of Pilgrim will appreciably increase New England’s reliance on natural gas-fired generation and would appear to strengthen the hand for those arguing that additional action is needed to address this over-reliance.    Taking a different perspective, in its Press Release Entergy noted that “wholesale energy market design flaws continue to suppress energy and capacity prices in the region” and that “also detrimental are a state proposal to provide above-market prices to utilities in Canada for hydro power”.   While the above referenced proposal clearly would have adversely affected the economics of Pilgrim if it were implemented, it would appear that Entergy’s decision was based on current economics.  These economics were appreciably worsened when the unit was placed on a list by the Nuclear Regulatory Commission that would cause it to be subjected to enhanced inspections, at an increased operating cost of $45 to $60 million per year.  Interestingly, Entergy noted that the decision to retire the unit would be neutral to positive for cash flow through 2020.

This decision is further confirmation that New England’s electricity markets are struggling to incent the desired mix of generation resources in the wake of low underlying natural gas prices, but with sustained natural gas price volatility in the winter months from pipeline constraints.    Entergy also suggested that long-term contracts for Class I renewable resources were distorting New England energy and capacity market prices.   The evidence here is clearer cut.  With Class I REC prices for some New England states in the mid $50/MWh range, but with RGGI allowance prices equating only to about $2.5/MWh for a CCGT, the value of carbon in the ISO-NE markets appears to be significantly underpriced, with long-term contracts for renewables contributing to this.   Unfortunately, for Pilgrim a fix would be too late and for Massachusetts overall there don’t appear to be any more “at risk” large non-carbon emitting resources in state that would benefit from getting these pricing signals right.   However, with a regional power market attention to these issues continues to be important.

Entergy Sells RI CCGT: Reading the Tea Leaves

John Dalton, President, Power Advisory LLC

Entergy announced that it had an agreement with Carlyle Power Partners to sell its 583 MW Rhode Island CCGT for $840/kW.  Is this a strategic exit from the ISO-NE market with an anticipated top in Forward Capacity Auction (FCA) prices or, as has been suggested by UBS, another indication that Entergy is getting close to shutting down the Pilgrim nuclear plant?

It certainly appears that FCA prices have peaked based on evidence of “capacity creep”, i.e., what are likely to be relatively low cost increases in capacity at various existing facilities (primarily CCGTs) across New England. (See the ISO-NE Interconnection Queue)  However, if Entergy were planning on closing Pilgrim wouldn’t it hold on to its RI CCGT to get the market heat rate and possibly the FCA valuation bump from the closure of the 677 MW of baseload supply?

UBS notes that the RI CCGT was a physical hedge for Entergy’s Vermont Yankee (retired) and Pilgrim Nuclear Power Plants and that with an impending retirement of Pilgrim the CCGT isn’t core to Entergy’s return to basics strategy.